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Notes 3. UNIFORM CONVERGENCE

Uniform convergence is the main theme of this chapter. In Section 1 pointwise
and uniform convergence of sequences of functions are discussed and examples
are given. In Section 2 the three theorems on exchange of pointwise limits, inte-
gration and differentiation which are corner stones for all later development are
proven. They are reformulated in the context of infinite series of functions in
Section 3. The last two important sections demonstrate the power of uniform
convergence. In Sections 4 and 5 we introduce the exponential function, sine and
cosine functions based on differential equations. Although various definitions of
these elementary functions were given in more elementary courses, here the def-
initions are the most rigorous one and all old ones should be abandoned. Once
these functions are defined, other elementary functions such as the logarithmic
function, power functions, and other trigonometric functions can be defined ac-
cordingly. A notable point is at the end of the section, a rigorous definition of
the number π is given and showed to be consistent with its geometric meaning.

3.1 Uniform Convergence of Functions

Let E be a (non-empty) subset of R and consider a sequence of real-valued func-
tions {fn}, n ≥ 1 and f defined on E. We call {fn} pointwisely converges to
f on E if for every x ∈ E, the sequence {fn(x)} of real numbers converges to
the number f(x). The function f is called the pointwise limit of the sequence.
According to the limit of sequence, pointwise convergence means, for each x ∈ E,
given ε > 0, there is some n0(x) such that

|fn(x)− f(x)| < ε , ∀n ≥ n0(x) .

We use the notation n0(x) to emphasis the dependence of n0(x) on ε and x. In
contrast, {fn} is called uniformly converges to f if n0(x) can be chosen to be
independent of x, that is, uniform in x. In other words, it means, given ε > 0,
there is some n0 such that

|fn(x)− f(x)| < ε , ∀n ≥ n0, x ∈ E .

We shall use the notation fn ⇒ f to denote {fn} uniformly converges to f .

Example 3.1 Consider the sequence of functions {xn} defined on [0, 1]. Its point-
wise limit is easily found. Indeed, when x ∈ (0, 1), xn → 0 as n→∞ and, when
x = 1, xn → 1 as n → ∞. We see that the pointwise limit of this sequence
is the function ψ(x) = 0, x ∈ [0, 1) and ψ(1) = 1. Next, we claim that this
sequence is not uniform convergent. Indeed, for x ∈ [0, 1), xn = |xn − 0| < ε
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iff n > log ε/ log x. It follows that n0(x) > log ε/ log x. As x comes close to 1,
n0(x) becomes unbounded. Therefore, there is no way to find an n0 to make
|xn − 0| < ε, n ≥ n0, for all x ∈ [0, 1).

Example 3.2 Let ϕ be a function which is positive and continuous on [1/2, 3/4]
and 0 elsewhere. Define fn(x) = ϕ(x − n). It is clear that it converges point-
wisely to the zero function. In fact, given x > 0 we can find some N such that
x ∈ [N,N + 1]. Taking ε < 1, From |fn(x) − 0| = |ϕ(x − n)| < ε if and only
if n ≥ N + 1. That is, n0(x) ≥ N + 1 → ∞ as x → ∞. We conclude that the
convergence is not uniform.

The following fact is immediate from the definition, but is worthwhile to single
out.

Proposition 3.1. Suppose that {fn} converges uniformly to f on E. Then {fn}
converges pointwisely to f on E.

Example 3.3 Consider the functions kn(x) = cos[nπ/(1+x2)] on [−1, 1]. At each
x, kn(x) keeps jumping up and down and becomes more rapidly as n increases.
We do not see any possible limit. This suggests that {kn} is not convergent. In
fact, we focus at the point x = 0 where kn(0) = cosnπ = (−1)n does not have a
limit. So this sequence is not even pointwise convergent, let alone uniform con-
vergent.

Observe that to establish uniform convergence it suffices to restrict ε to some
interval (0, ε0]. In the following examples we implicitly assume ε ∈ (0, 1).

Example 3.4. Let fn(x) = 1/(n2 + x2), x ∈ R, n ∈ N. By plotting graphs
it is easily seen that fn’s tend to zero nicely. We guess that the zero function is
their uniform limit. To prove this, we note the following simple estimate

|fn(x)| ≤ 1

n2
, ∀x ∈ R.

Therefore, for ε > 0, by taking n0 > 1/
√
ε,, we have |fn(x)−0| < ε for all n ≥ n0

and x ∈ R. So fn ⇒ 0.

Example 3.5. Let gn(x) = (x2 + 1)ex/n, x ∈ [0, 1]. As n → ∞, x/n → 0 for
all x > 0. It suggests that {gn} tends to g(x) ≡ (x2 + 1) as n → ∞. To prove
it we observe that |gn(x) − g(x)| = |(x2 + 1)(ex/n − 1)| ≤ 2|ex/n − 1| on [0, 1].
For x ∈ [0, 1], we know that 0 ≤ ex/n − 1 ≤ e1/n − 1. As limn→∞ e

1/n = 1, for
ε > 0, there exists some n0 such that e1/n − 1 < ε for all n ≥ n0. It follows that
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|gn(x)− g(x)| < ε,∀x ∈ [0, 1], n ≥ n0, that is, gn ⇒ g on [0, 1].

The collective convergence behavior of a sequence of functions can be de-
scribed in terms of a single numerical sequence. Introduce the supnorm (or
uniform norm) of a function g by letting

‖g‖ = sup {|g(x)| : x ∈ E} .

It is clear that ‖g‖ is a finite number if and only if g is a bounded function on E.
The following properties of the sup-norm are evident and will be used from time
to time.

Proposition 3.2. Let f, g be bounded functions on E. Then

(a)
‖f‖ ≥ 0 and ‖f‖ = 0 iff f(x) = 0 ,∀x ∈ E .

(b)
‖αf‖ = |α|‖f‖ , α ∈ R .

(c)
‖f + g‖ ≤ ‖f‖+ ‖g‖ .

We observe that uniform convergence of {fn} is equivalent to the convergence
of the sequence {‖fn‖}.

Proposition 3.3. Let {fn} be defined on E with pointwise limit f . Then {fn}
converges uniformly to f if and only if limn→∞ ‖fn − f‖ = 0 .

Proof. Let {fn} converge uniformly to f . For ε > 0, there is some n0 such that
|fn(x)− f(x)| < ε/2 for all n ≥ n0 and x ∈ E. Taking supremum over all x ∈ E,
we get

‖fn − f‖ = sup
x
|fn(x)− f(x)| ≤ ε

2
< ε , n ≥ n0 .

The converse is evident.

For ε > 0, the ε-tube of f is the set in the plane given by

{(x, y) : f(x)− ε < y < f(x) + ε, x ∈ E} .

Geometrically, that {fn} converges uniformly to f means for each ε > 0, there is
some n0 such that all graphs of fn, n ≥ n0 lie inside the ε-tube of f .

Example 3.6. Consider hn(x) = x/(n2 + x2) on R. By comparing the order
of growth of the numerator and denominator at infinity, one is convinced that
hn tends to 0 in certain sense. Instead of working out an estimate (which is now
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not so straightforward) as above, we argue by evaluating the supnorm directly.
Observing that the supremum of the absolute value of a function is equal to
either the maximum or the negative of the minimum of the function (depending
on which one has larger corresponding value), we differentiate each hn to find its
maximum/minimum. By setting

h′n(x) =
(n2 + x2)− 2x2

(n2 + x2)2
= 0,

we find that there are two critical points x = n,−n. It is not hard to see that the
former is the maximum and the latter minimum, and ‖hn‖ = |h(±n)| = 1/2n→ 0
as n→∞.

From these examples you can see that the study of uniform convergence of
sequences of functions {fn} requires certain effort. Summarizing what have been
done, we have

• Determine the pointwise limit of the sequence of functions. It is not point-
wise convergent (hence not uniformly convergent) when the pointwise limit
does not exist somewhere, that is, the sequence diverges at some point, see
Example 3.3.

• Use various methods to estimate |fn(x) − f(x)| independent of x, see Ex-
ample 3.4 and Example 3.5.

• Finally, if possible, evaluate the supnorm ‖fn − f‖ directly by the method
of differentiation, see Example 3.6.

A basic property of Rn is that all Cauchy sequences converge in Rn. It is
useful for the establishment of the convergence of a sequence when its limit is not
known. The concept of a Cauchy sequence makes perfect sense here. We call a
sequence of functions {fn} on E a Cauchy sequence (in supnorm) if for every
ε > 0, there exists n0 ∈ N such that

||fn − fm|| < ε, ∀n,m ≥ n0.

Just the same as in the Euclidean space, we have

Theorem 3.4. Let {fn} be a sequence of functions on E. It is uniformly con-
vergent if and only if it is a Cauchy sequence in supnorm.

Proof. “ ⇒ ”. Let {fn} converge to f in the supnorm. For ε > 0, there is some
n0 such that ‖fn − f‖ < ε/2 for all n ≥ n0. By the triangle inequality (see
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Proposition 3.2)

‖fn − fm‖ ≤ ‖fn − f‖+ ‖f − fm‖ <
ε

2
+
ε

2
= ε , ∀n ≥ n0 ,

so {fn} is a Cauchy sequence in supnorm.

“⇐ ”. Let {fn} be a Cauchy sequence in supnorm. For ε > 0,∃n0 ∈ N such that

||fn − fm|| <
ε

2
, ∀n,m ≥ n0.

In other words, for all x ∈ E,

|fn(x)− fm(x)| < ε

2
, ∀n,m ≥ n0.

It shows that {fn(x)} is a numerical Cauchy sequence, so it converges to a real
number yx. We define a function f by setting f(x) = yx. Then for each x, {fn(x)}
converges to f(x) as n→∞. Now, by passing m→∞ above,

||fn − f || = sup
x∈E
|fn(x)− f(x)| ≤ ε

2
< ε, ∀n ≥ n0,

whence fn ⇒ f .

The Cauchy sequence test may be regarded as the ultimate test for uniform
convergence. It works especially when the limit function is no way to find. Let
us examine the following example.

Example 3.7 Consider the sequence of the functions given by

ϕn(x) =
n∑
j=1

sin jx

j2
, n ≥ 1.

Apparently there is no simple way to find the pointwise limit of this sequence.
However, using the boundedness of the sine function, we have

|ϕn(x)− ϕm(x)| <
n∑

m+1

1

j2
.

As
∑∞

1 1/j2 <∞, for each ε we can find some n0 such that
∑n

m+1 j
−2 < ε/2. It

follows that
‖ϕn − ϕm‖ = sup

x
|ϕn(x)− ϕm(x)| ≤ ε

2
< ε .

we conclude that for n,m ≥ n0, {ϕn} forms a Cauchy sequence in supnorm in R.
By Theorem 3.4 it converges uniformly to some function.
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The advantage of the Cauchy criterion for uniform convergence is that we do
not need any information on the limit function before hand. Many applications
will make this point crystal clear in our subsequent development. This criterion
is very general. In fact, we do not have to specify whether the functions are
bounded or continuous on E. It makes sense for any sequence of functions on E
and the limit is again a function defined on E.

3.2 Interchange of Limits

Uniform convergence turns out to be an indispensable notion in analysis. Many
properties which are lost under the process of taking pointwise limit are preserved
under uniform limit. In this section we study how continuity, differentiability and
integrability are preserved under various uniform convergence assumptions. They
will have greater applications in our subsequent development.

First of all, we have

Theorem 3.5. Let {fn} be a sequence of functions which converges uniformly to
the function f on E.

(a) If {fn} ⊂ B(E), then f ∈ B(E) .

(b) If {fn} ⊂ C(E), then f ∈ C(E).

Here we have used B(E) to denote all bounded functions and C(E) all con-
tinuous functions on E.

Proof. (a) taking ε = 1, there is some n0 such that |fn(x) − f(x)| < 1 for all
n ≥ n0 and x ∈ E. Therefore,

|f(x)| ≤ |f(x)− fn0(x)|+ |fn0(x)| ≤ 1 + sup
x
|fn0(x)| ,

so ‖f‖ = supx |f(x)| ≤ 1 + ‖fn0‖ is finite.

(b) When every fn is continuous, we claim that f is also continuous. For, we take
ε > 0 to be arbitrary and fix n1 such that |fn(x) − f(x)| < ε/3 for n ≥ n1. Let
x0 ∈ E. As fn1 is continuous, there exists δ > 0 such that

|fn1(x)− fn1(x0)| <
ε

3
, if |x− x0| < δ, x ∈ E.
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Therefore, for x ∈ E, |x− x0| < δ,

|f(x)− f(x0)| ≤ |f(x)− fn1(x)|+ |fn1(x)− fn1(x0)|+ |fn1(x0)− f(x0)|

<
ε

3
+
ε

3
+
ε

3
= ε,

which shows that f is continuous at x0. Since x0 ∈ E is arbitrary, it follows that
f ∈ C(E).

Example 3.1 revisited. We considered the functions {xn} on [0, 1) and
showed that it is not uniformly convergent to 0. Now, let us consider it on
[0, 1]. The sequence converges pointwisely to the function ψ(x) which is given by
ψ(x) = 0, x ∈ [0, 1) and ψ(1) = 1, but the convergence is not uniform (it is not
on [0, 1), therefore not on any larger domain). Each xn is continuous on [0, 1] but
ψ has a discontinuity at x = 0. This example shows that the pointwise limit of a
sequence of continuous functions may not be continuous.

In MATH2050/2060 we have learnt three types of limit processes:

• First, limits of functions limx→x0 f(x) .

• Second, differentiation

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

• Third, integration ∫ b

a

f =
∑
||P ||→0

f(zj)∆xj .

Our first result is concerned with the interchange of limits which, in symbolic
form, can be expressed as

lim
x→x0

lim
n→∞

fn(x) = lim
n→∞

lim
x→x0

fn(x). (3.1)

Theorem 3.6. Let {fn} ⊆ C(E) converge uniformly to f on E. Then for every
x0 ∈ E, (3.1) holds.

Proof. This is essentially Theorem 3.5(b). The left hand side of (3.1) is limx→x0 f(x)
which, by the continuity of f is equal to f(x0). On the other hand, the right hand
side of (3.1) is equal to limn→∞ fn(x0), which by the pointwise convergence of fn,
is also equal to f(x0), done.
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Next, we consider the situation∫ x

a

lim
n→∞

fn(t)dt = lim
n→∞

∫ x

a

fn(t)dt (3.2)

Theorem 3.7. Let {fn} ⊆ R[a, b] converge uniformly to f . Then f ∈ R[a, b].
Moreover, the indefinite integrals of fn’s converge uniformly to the indefinite in-
tegral of f . In particular, (3.2) holds for all x ∈ [a, b].

Proof. From the definition of integrability, all fn’s are bounded, so f is also
bounded as their uniform limit by Proposition 3.5(a). By uniform convergence,
given ε > 0, there exists n0 such that

|fn(x)− f(x)| < ε

4(b− a)
, ∀n ≥ n0, and ∀x ∈ [a, b].

It follows that

oscI(fn − f) ≤ sup
x,y∈[a,b]

|fn(x)− f(x)− (fn(y)− f(y))|

≤ sup
x
|fn(x)− f(x)|+ sup

y
|fn(y)− f(y)|

≤ ε

2(b− a)
,

on every subinterval I of [a, b]. Now, as fn0 is integrable, we can find a partition
P such that

∑
P oscIjfn0∆xj < ε/2. Therefore, we have∑

P

oscIjf∆xj ≤
∑
P

oscIjfn0∆xj +
∑
P

oscIj(f − fn0)∆xj

<
ε

2
+

ε

2(b− a)
(b− a)

= ε.

So f ∈ R[a, b] by the Second Integrability Criterion.

Next, denote the indefinite integrals of fn and f by Fn and F respectively.
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For all x ∈ [a, b], we have

|Fn(x)− F (x)| =
∣∣∣∣∫ x

a

(fn(t)− f(t))dt

∣∣∣∣
≤
∫ x

a

∣∣fn(t)− f(t)
∣∣dt

≤
∫ b

a

∣∣fn(t)− f(t)
∣∣dt

≤ (b− a)||fn − f ||

<
ε

4
,

for n ≥ n0. Hence Fn converges uniformly to F . Now (3.2), which asserts that
Fn converges pointwisely to F , follows from Proposition 3.1.

Example 3.8. Here we show that the uniform convergence of {fn} cannot be
replaced by pointwise convergence in Theorem 3.7. Let ϕn(x) be the function on
[0, 1] which is equal to n2x, x ∈ [0, 1/n], equal to −n2(x − 2/n), x ∈ [1/n, 2/n]
and becomes zero elsewhere. It is clear this sequence converges pointwisely but
not uniformly to the zero function on [0, 1]. We have∫ 1

0

ϕn(x)dx = 1 6=
∫ 1

0

0 dx = 0 .

Our last result is concerned with

d

dx
lim
n→∞

fn = lim
n→∞

d

dx
fn. (3.3)

Theorem 3.8. Let {fn} be a sequence of differentiable functions on some interval
I. Assume that

(a) it converges to a function f pointwisely on I; and

(b) {f ′n} converges uniformly to a function g on I.

Then f is differentiable and f ′ = g on I.

Proof. Fix x0 ∈ I. For each x ∈ I \ {x0}, by applying Mean-Value Theorem to
the function fn − fm we find z between x and x0 such that

(fn − fm)(x)− (fn − fm)(x0) = (x− x0)(f ′n(z)− f ′m(z)).
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Let ε > 0. As f ′n ⇒ g on [a, b], {f ′n} is a Cauchy sequence in supnorm. There
exists n0 ∈ N such that ||f ′n − f ′m|| < ε/3 for all n,m ≥ n0. Therefore, we have∣∣∣∣fn(x)− fn(x0)

x− x0
− fm(x)− fm(x0)

x− x0

∣∣∣∣ ≤ ||f ′n − f ′m|| < ε

3
.

Letting m→∞ in this estimate we obtain∣∣∣∣fn(x)− fn(x0)

x− x0
− f(x)− f(x0)

x− x0

∣∣∣∣ ≤ ε

3
, ∀n ≥ n0. (3.4)

As {f ′n}⇒ g, we can fix a large N ≥ n0 so that

|f ′N(y)− g(y)| < ε

3
, ∀y ∈ I. (3.5)

As fN is differentiable at x0, there exists some δ > 0 such that∣∣∣∣fN(x)− fN(x0)

x− x0
− f ′N(x0)

∣∣∣∣ < ε

3
, whenever 0 < |x− x0| < δ. (3.6)

By combining (3.4), (3.5) and (3.6), we have, for any x ∈ I with 0 < |x−x0| < δ,∣∣∣∣f(x)− f(x0)

x− x0
− g(x0)

∣∣∣∣ ≤ ∣∣∣∣f(x)− f(x0)

x− x0
− fN(x)− fN(x0)

x− x0

∣∣∣∣
+

∣∣∣∣fN(x)− fN(x0)

x− x0
− f ′N(x0)

∣∣+
∣∣f ′N(x0)− g(x0)

∣∣∣∣
<
ε

3
+
ε

3
+
ε

3
< ε.

So f ′(x0) exists and is equal to g(x0). Since x0 ∈ I could be any point in I, f ′

exists and is equal to g on I.

Remark. In this theorem we can replace (a) with a weaker assumption, namely,

(a)’ {fn(x0)} is convergent at some x0 ∈ I.

To see that (a)’ and (b) imply (a), we let y0 = limn→∞ fn(x0) and define

f(x) = y0 +

∫ x

x0

g(t)dt , x ∈ I .

As f ′n ⇒ g, it is easy to see or simply by Theorem 3.87owever, (a) and (b) are
easier to memorize.

Example 3.9. Consider ϕn(x) = xn+1/(n+ 1), n ≥ 1. It is clear that {ϕn} con-
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verges pointwisely (in fact, uniformly) to ϕ(x) ≡ 0. On the other hand, ϕ′n = xn

given in Example 3.4 revisited. We knew that {xn} converges to the discontin-
uous function ψ pointwisely but not uniformly on [0, 1]. The limit function ϕ is
differentiable on [0, 1] and it is not equal to ψ. This shows that the assumption
“f ′n ⇒ g” cannot be replaced by pointwise convergence in Theorem 3.8.

The next result may be regarded as a special one. It shows pointwise conver-
gence together with some monotonicity implies uniform convergence.

Theorem 3.9 (Dini’s Theorem). Suppose that {fn} is a monotone sequence
of continuous functions on [a, b]. Suppose that it converges pointwisely to the
continuous function f on [a, b]. Then {fn} converges uniformly to f .

A sequence {fn} is monotone means either {fn(x)} is increasing or decreasing
at every x.

Proof. Let us take fn to be decreasing and so fn − f decreases to 0 pointwisely.
If fn−f does not converge to 0 uniformly, by definition there exists some ε0 such
that ‖fn − f‖ ≥ 2ε0 > 0 for infinitely many n’s. For simplicity we may assume
that it is so for all n’s. Then we can find, for each n, a point xn in [a, b] such that

fn(xn)− f(xn) = |fn(xn)− f(xn)| ≥ ε0.

By Bolzano-Weierstrass theorem, {xn} contains a subsequence {xnj
} convergent

to some x∗. As each fn is decreasing,

fm(x)− f(x) ≥ fn(x)− f(x), ∀m,n, m ≤ n.

Taking m = nk and n = nj, j ≥ k, we obtain

fnk
(xnj

)− f(xnj
) ≥ fnj

(xnj
)− f(xnj

) ≥ ε0.

Now fix nk and let nj go to infinity, we get

fnk
(x∗)− f(x∗) ≥ ε0,

for all nk, but this impossible because fn − f tends to 0 pointwisely. This con-
tradiction shows that the convergence must be uniform.

3.3 Series of Functions

As we learnt before, convergence of an infinite series of numbers means the con-
vergence of the sequence of numbers formed by the partial sums of the series.
From the relation between a series and its sequence of partial sums, many results
on sequences can be reformulated as results for series. For the case of sequences
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of functions there is no exception.

Given a series of functions on some E ⊆ R, we use the notation
∑∞

j=1 fj to
denote the series. The n-th partial sum of this series is given by the function
sn(x) ≡

∑n
j=1 fj(x). We call the infinite series

∑∞
j=1 fj converges uniformly

(resp. converges pointwisely) if the sequence of partial sums, {sn}, converges
uniformly (resp. pointwisely) on E. The limit function is usually denoted also
by
∑∞

j=1 fj.

Thus there are two meanings for
∑∞

j=1 fj(x) or
∑

j fj: First, it is simply a
notation standing for the infinite series formed by fj’s. Second it means the limit
limn→∞ sn(x) provided {sn(x)} is a convergent sequence.

Without much effort, we transplant Theorems 3.6, 3.7 and 3.8 to series of
functions.

Theorem 3.6’ Let
∑∞

j=1 fj be a series of continuous functions on E which con-
verges uniformly. Then its limit

∑∞
j=1 fj is also continuous on E.

Proof. Let {sn(x)} be the sequence of partial sums of the series
∑∞

j=1 fj(x). By
assumption each fj is continuous, so is each sn. Since sn ⇒

∑∞
j=1 fj, by Theorem

3.6,
∑∞

j=1 fj is continuous.

Theorem 3.7’ Let
∑∞

j=1 fj be a series of Riemann integrable functions which
converges uniformly on [a, b]. Then its limit

∑∞
j=1 fj is also integrable on [a, b],

and
∞∑
j=1

∫ x

a

fj =

∫ x

a

∞∑
j=1

fj, ∀x ∈ [a, b],

holds.

Proof. We have the partial sums {sn} of fn’s converges uniformly to the function∑∞
j=1 fj. From Theorem 3.7 we have

∫ x
a
sn converges uniformly to

∫ x
a

∑∞
j=1 fj.

Thus,
∞∑
j=1

∫ x

a

fj = lim
n→∞

n∑
j=1

∫ x

a

fj = lim
n→∞

∫ x

a

sn =

∫ x

a

∞∑
j=1

fj.

Theorem 3.8’ Let
∑∞

j=1 fj be a series of differentiable functions on an interval
I which converges pointwisely on I. Suppose that

∑∞
j=1 f

′
j converges uniformly
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on I. Then
∑∞

j=1 fj converges uniformly to a differentiable function on I, and

d

dx

∞∑
j=1

fj =
∞∑
j=1

dfj
dx
.

I leave the proof of this theorem as an exercise.

In contrast to sequences of functions, we have the following criterion of uniform
convergence tailored for series of functions. It is perhaps the most useful one.

Theorem 3.10 (Weierstrass M-test). Let {fn}, n ∈ N, be functions defined
on E. Suppose there exist non-negative numbers an’s satisfying

|fn(x)| ≤ an, ∀x ∈ E, ∀n ≥ N for some N.

Then the series
∑∞

n=1 fn is uniformly convergent on E provided
∑∞

n=1 an is con-
vergent.

Proof. For simplicity we take N = 1. Denote by sn the n-th partial sum of∑∞
j=1 fj. Let ε > 0. As

∑
an <∞, there exists an n0 ∈ N such that∣∣∣∣∣

n∑
j=1

aj −
m∑
j=1

aj

∣∣∣∣∣ =
n∑

j=m+1

aj < ε, ∀n,m ≥ n0 with n > m.

As each fn(x) is dominated by an, we have

|sn(x)− sm(x)| =

∣∣∣∣∣
n∑

j=m+1

fj(x)

∣∣∣∣∣
≤

n∑
j=m+1

|fj(x)|

≤
n∑

j=m+1

aj

< ε, ∀m,n ≥ n0 ,

on E. In other words, {sn} is a Cauchy sequence in supnorm, hence it converges
uniformly according to Theorem 3.4.

Example 3.11. (a) Consider {fn} where fn(x) = cosnx/n2, for x ∈ R, n ∈ N.
It is clear |fn(x)| ≤ 1/n2 for all x ∈ R. By the Weierstrass M-test we conclude
that the series

∑∞
n=1 cosnx/n2 converges uniformly to a continuous function φ
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on the real line. Usually we simply let

∞∑
j=1

cosnx

n2

to denote the limit function φ.

(b) Consider the series
∑∞

n=1 e
−nx , x ∈ [1,∞). We have |e−nx| ≤ e−n for x ≥ 1.

Since en ≥ n2/2, e−n ≤ 2n−2. By
∑∞

n=1 n
−2 <∞, M-Test and Theorem 3.6’, this

series converges uniformly to a continuous function. In fact, we claim that this
function is differentiable. To see this it suffices to examine the series obtained
by differentiating the original series, which is given by

∑∞
n=1(−n)e−nx. Using

en ≥ n3/3!, we have ne−n ≤ 6n−2. Therefore by M-Test and Theorem 3.7’, this
derived series converges uniformly to a continuous function on [1,∞). Then an
application of Theorem 3.8’ shows that the original limit function

∑∞
n=1 e

−nx is
differentiable on [1,∞) with derivative given by −

∑∞
n=1 ne

−nx. Actually, by re-
peating this argument one can show that

∑∞
n=1 e

−nx is a smooth function.

3.4 The Exponential and Logarithmic Functions

The most familiar functions are the constants and linear functions. By multiply-
ing and adding them up we get polynomials. Next by taking quotients rational
functions come into play. Using the existence of inverse to the function x 7→ xm

one can form the m-th root of a rational function. We may also form new func-
tions by taking composition of two functions. By repeating these operations we
obtain many many functions. We know how to differentiate these functions using
those familiar rules of differentiation. However, there are functions which cannot
be obtained by finitely many steps of these operations. So they are called tran-
scendental. Among many, the exponential function and the cosine/sine functions
are the most important ones. The former describes natural growth and the latter
depicts periodic motions. Closely associated are the logarithmic function and
other trigonometric functions. In these notes we define these transcendental ele-
mentary functions rigorously and derive their basic properties. As an application
we use the exponential and logarithmic functions to define any real power of a
positive number; so far we have only defined it for rational powers.

We emphasis that the trigonometric functions we learnt in high school were
defined by geometric method. We do not take them as rigor ones. Here we shall
define the cosine and sine functions to be certain solutions to some differential
equations. In order to be systematic, the same approach is also adopted for the
exponential function. The advantage of this approach will soon become evident.
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Our first elementary transcendental function is the exponential function. Con-
sider the differential equation

df

dx
= f, f(0) = 1. (3.7)

We would like to find a function f solving this problem. It is not hard to come
up with a formal one. Letting

f(x) = 1 +
x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·

then f(0) = 1 and

f ′(x) = 1 +
x

1!
+
x2

2!
+
x3

3!
+ · · ·

so (3.7) is satisfied.

Theorem 3.11.

(a) There exists a unique solution E to (3.7), In fact, for each x ∈ R, E(x) is
given by the series

∑∞
j=0 x

j/j! where the convergence is uniform on every
bounded interval.

(b) E is smooth on R.

(c) E is positive on R, lim
x→∞

E(x) =∞ and lim
x→−∞

E(x) = 0. In particular, its

range is (0,∞).

(d) E is strictly increasing and strictly convex.

This solution E is called the exponential function.

Proof. (a) Let E(x) be the infinite series
∞∑
j=0

xj

j!
. We first show that it converges

uniformly on each interval [−M,M ] for any M > 0. To this end, we use M -test.
Let

aj =
M j

j!
.

It is an old exercise that
∞∑
j=0

aj <∞ for any fixed M . As

∣∣∣∣ xjj!
∣∣∣∣ ≤ aj, ∀ x ∈ [−M,M ],

by Weierstrass M -test,
∑∞

j=0 x
j/j! converges uniformly on [−M,M ] to E(x) and

by Theorem 3.6’, E is a continuous function on [−M,M ]. Next, we observe that
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the series obtained by termwise differentiating E(x) is given by
∑∞

j=1 jx
j−1/j!

which is the same as E(x) =
∑∞

j=0 x
j/j!. It converges uniformly on [−M,M ].

By Theorem 3.8’ that E is differentiable and satisfies (3.7) on [−M,M ]. Since
M > 0 is arbitrary, it follows that (3.7) holds on R.

To prove uniqueness let f1 and f2 be two solutions to (3.7). Then their dif-
ference f = f2 − f1 satisfies the equation in (3.7) and f(0) = 0, and f1 ≡ f2 iff
f ≡ 0. In the following we will establish a slightly general result; we replace 0 be
an arbitrary point x0.

Let f satisfy the equation in (3.7) and f(x0) = 0 at some x0. Then f ≡ 0.

Indeed, it is sufficient to show it vanishes for all x ∈ [x0 − 1/2, x0 + 1/2], for we
may apply the assertion replacing x0 by x0±1/2 and then spread out. To achieve
that, we integrate the equation to get

f(x) = f(x0) +

∫ x

x0

f ′(s)ds

= f(x0) +

∫ x

x0

f(s)ds .

For z ∈ (0, 1/2), let |f(x1)| = max{|f(x)| : x ∈ [x0 − 1/2, x0 + 1/2]}. We have

|f(x1)| ≤
∣∣∣ ∫ x1

x0

|f(s)|ds
∣∣∣

≤ |f(x1)|
∣∣∣ ∫ x1

x0

ds
∣∣∣

=
|f(x1)|

2
,

which forces |f(x1)| = 0, in other words, f vanishes identically on [x0− 1/2, x0 +
1/2].

(b) This follows from repeatedly using the equation in (3.7), which asserts that
whenever the right side f is k-times differentiable implies the left hand side f ′ is
k-times differentiable, so f is k+ 1-times differentiable. Repeating this reasoning
we see that E is infinitely many times differentiable, that is, it is smooth.

(c) From E(x) =
∑∞

j=0 x
j/j! ≥ 1 + x, ∀x > 0, it shows that E(x) → ∞ as

x → ∞. Since E > 0 on [0,∞), if it is not positive on R, there exists x0 < 0 so
that E(x0) = 0. However, this is impossible in view of the proof of uniqueness
above. We shall prove E(x)→ 0 as x→ −∞ later. Assuming this fact, it follows
from the intermediate value theorem that E(R) = (0,∞).
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(d) From E ′′ = E ′ = E > 0 we get (d).

Now, we show that E(x)→ 0 as x→ −∞. As E is strictly increasing and
always positive, lim

x→−∞
E(x) = α ≥ 0 exists. For x < 0,

1 = E(0) = E(x) +

∫ 0

x

E ′(t) dt

≥ 0 +

∫ 0

x

E(t) dt > α(−x)→∞, as x→ −∞,

which forces α = 0.

We point out that in fact Theorem 3.11(c) concerning E(x) as x→∞ can be
sharpened to limx→∞E(x)/xn =∞ for every n ≥ 1. In particular, it implies the
basic fact that the exponential function grows faster than any polynomial at ∞.
Indeed, it suffices to observe the inequality

E(x) ≥ xn

n!

for every n and x ≥ 0.
Now we establish the most important properties of the exponential function.

It demonstrates the power of the approach by differential equations.

Theorem 3.12.
(a)

E(x+ y) = E(x)E(y), ∀x, y ∈ R,

(b)
E(αx) = E(x)α, ∀α ∈ Q.

Proof. (a) Let f(x) = E(x + y)/E(y) when y is fixed. One readily verifies that
f satisfies (3.7), so by uniqueness, f(x) = E(x).
(b) It follows from (a) and induction that for any x ∈ R and n ∈ N, E(nx) =
E(x)n. Thus,

E(x) = E

n times︷ ︸︸ ︷(x
n

+ · · ·+ x

n

)
= E

(x
n

)n
,

so E(x/n) = E(x)1/n. Also, when m ∈ N, we have E(−mx)E(mx) = E(−mx +
mx) = E(0) = 1, whence

E(−mx) =
1

E(mx)
=

1

E(x)m
= E(x)−m.
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Now, write α = m/n for some m ∈ Z and n ∈ N. Then,

E
(m
n
x
)

= E
(x
n

)m
=
(
E(x)1/n

)m
= E(x)m/n.

In MATH2050 we defined the number e by

e = 1 +
1

2!
+

1

3!
+

1

4!
+ · · · ,

we have E(1) = e. By Theorem 3.12(b)

E(α) = E(α · 1) = E(1)α = eα , α ∈ Q .

Although the left hand side E(α) is well-defined for all real number α, so far we
have only defined the right hand side eα for rational number α. We will shortly
use this relation to define eα for all real α.

From Theorem 3.11(d) and (b), we deduce that E has an inverse function
which is continuous from (0,∞) to R. As E ′ is always positive, this inverse
function is differentiable. We call it the (natural) logarithmic function and
denote it by log x or lnx. By translating Theorems 3.11 and 3.12 to the logarith-
mic function, we have

Theorem 3.13.

(a) log : (0,∞) → R is strictly increasing, concave, and satisfies log 1 = 0,
lim
x→∞

log x =∞ and lim
x→0+

log x = −∞.

(b)
d

dx
(log x) =

1

x
, ∀ x > 0.

(c) log(xy) = log x+ log y, ∀ x, y > 0.

(d) log(xα) = α log x, ∀ α ∈ Q, x > 0.

Note that (b) implies that the logarithmic function is smooth. Recall that a
function f is concave is its negative −f is convex.

Proof. (a) follows from Theorems 3.11 and 3.12 and the fact that log is the inverse
of the exponential function.
(b) We differentiate the relation E(log x) = x. Applying Chain Rule to the left
hand side yields

d

dx
E(log x) = E ′(log x)

d

dx
log x = E(log x)

d

dx
log x = x

d

dx
log x ,



2018 Spring MATH2060A Mathematical Analysis II 19

while the right hand side is equal to 1. Hence (b) holds.
(c) Since E is one-to-one, it suffices to check E(log xy) = E(log x + log y). But
then E(log xy) = xy while E(log x+ log y) = E(log x)E(log y) = xy by Theorem
3.12(a).
(d) Again it suffices to check E(log(xα)) = E(α log x)). But this simply means
xα = E(α log x). Letting α = n/m where n ∈ Z and m ∈ N, by Theorem 3.12(b),

xα = (xn)1/m

= (E(log x)n)1/m

= E(n log x)1/m

= E
( n
m

log x
)

= E(α log x) .

We note that log x goes to∞ slower that any positive power, that is, for each
positive α, limx→∞ log x/xα = 0. For, letting y = log x, then x = E(y) and

lim
x→∞

log x

xα
= lim

y→∞

(
y1/α

E(y)

)α

= 0.

Now we use the exponential and logarithmic functions to define the real power
of a positive number. By Theorem 3.12(b)

E(α) = eα , α ∈ Q .

Since the RHS only makes sense for rational numbers but the LHS is well-defined
for all real number, it is natural to define

eα = E(α) , α ∈ R \Q .

Now eα is well-defined for all real numbers α. Next define the power (function)
of α, α ∈ R to be,

xα = E(α log x) .

By the chain rule, for each fixed α, xα is a smooth function on (0,∞). On the
other hand, for each fixed x > 0, it is a smooth function in α ∈ R.

We used to define the rational power by

xα = (xn)1/m , α =
n

m
, n ∈ Z, m ∈ N .
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Thus we need to show that our new definition is consistent with the old one for
a rational power, that is, (xn)1/m = E(n/m log x), but this is already contained
in Theorem 3.13(d) (or more precisely in its proof).

We have all the well-known properties of the power function.

Proposition 3.14. For x > 0 and α ∈ R,

(a) log xα = α log x,

(b) xαxβ = xα+β,

(c) (xα)β = xαβ,

(d)
d

dx
xα = αxα−1.

(e)
d

dα
xα = log x xα .

Proof. We only prove (b) and leave the rest as exercise. Indeed, taking log of
both sides of (b), we have

log(xαxβ) = log
(
E(α log x) · E(β log x)

)
= logE(α log x) + logE(β log x) ( by Theorem 3.15(c))

= (α + β) log x

= logE((α + β) log x)

= log xα+β (by (a)).

3.5 Trigonometric Functions

Consider the two problems for the second order differential equation

d2f

dx2
+ f = 0, f(0) = 1, f ′(0) = 0. (3.8)

d2f

dx2
+ f = 0, f(0) = 0, f ′(0) = 1. (3.9)
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Theorem 3.15. (a) There exists a unique solution C(x) to (3.8) and a unique
solution S(x) to (3.9). In fact, they are given respectively by the series

∞∑
j=0

(−1)jx2j

(2j)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ · · · ,

and
∞∑
j=1

(−1)j−1x2j−1

(2j − 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ · · · ,

where the convergence is uniform on any bounded interval.
(b) C(x) and S(x) are smooth on R and satisfy C ′(x) = −S(x) and S ′(x) = C(x).

Proof. We set

C(x) =
∞∑
j=0

(−1)jx2j

(2j)!
,

and

S(x) =
∞∑
j=1

(−1)j−1x2j+1

(2j + 1)!
.

On [−M,M ], M > 0, we claim that these series converge uniformly. For C(x)
we have ∣∣∣∣ (−1)jx2j

(2j)!

∣∣∣∣ ≤ aj ≡
M2j

(2j)!
.

It is known that
∑

j aj < ∞. By M -test, the conclusion follows. In particular,

C(x) =
∑∞

j=0(−1)jx2j/(2j)! is convergent for every x ∈ R. Same results hold for
S(x).

Similarly, one can show that the series obtained by termwise differentiating the
series defining C and S once converge uniformly on every [−M,M ]. By Theorem
3.8’, it follows that C and S satisfy (3.8) and (3.9) respectively on [−M,M ].
Clearly, it implies that both functions are smooth. The uniqueness of C and S
follows from the lemma below.

Lemma 3.16. Let f and g be two twice differentiable function both satisfying the
equation in (3.8) in R. Suppose that f(x0) = g(x0) and f ′(x0) = g′(x0) at some
x0. Then f and g are identical.

Proof. Although we could imitate what was done in the case of the exponential
function, this lemma is most easily proved by the following trick. Letting h =
f − g, we have

d

dx

(
h′2 + h2

)
= 2h′(h′′ + h) = 0 ,
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hence h′2 + h2 = c for some constant c whenever h solves the equation in (3.8).
When h(x0) = h′(x0) = 0, the constant c is equal to 0, so h vanishes identically.

If g is another solution of (3.8), the f = g−C solves the equation in (3.8) and
f ′(0) = f(0) = 0. Using this lemma we conclude g ≡ 0, that is, g ≡ C. Similarly
one can establish the uniqueness of S.

Proposition 3.17. We have, for every x, y ∈ R,

(a) C(−x) = C(x), S(−x) = −S(x);

(b) C2(x) + S2(x) = 1;

(c) C(x+ y) = C(x)C(y)− S(x)S(y), S(x+ y) = S(x)C(y) + S(y)C(x).

(d) C ′(x) = S(x) , S ′(x) = C(x) .

Proof. (a) This is obvious from the series representation.

(b) This simply follows from f ′2 + f 2 = 1 and f = C, f ′ = S.

(c) We prove the first identity only. For fixed y, both C(x+ y) and C(x)C(y)−
S(x)S(y) satisfy the same differential equation f ′′ + f = 0. It follows from
uniqueness that they are identical if C(0 + y) = C(0)C(y) − S(0)S(y) and
C ′(0 + y) = C ′(0)C(y)− S ′(0)S(y). But this is clearly true.

(d) It follows from the power series representation of both functions.

Now we come to the periodicity of the trigonometric functions. Recall that
a function f on (−∞,∞) is called periodic if there is some non-zero number T
such that f(x+ T ) = f(x),∀x. The number T is called a period of f . As −T is
again a period whenever T is a period, so are nT for all n ∈ N. It is nice to have
the concept of the minimal period. A positive number T is called the minimal
period for f if it is a period and there is not other period in (0, T ). In a previous
exercise and the midterm exam we showed that for a non-constant continuous pe-
riodic function has a minimal period and all other periods are its integer multiples.

Theorem 3.18. There exists a positive number P such that C(x + P ) = C(x)
and S(x+ P ) = S(x) for all x ∈ R.

Our proof is very different from the one in [BS].
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Proof. We first show that C must vanish somewhere. We know that C(0) =
1, C ′(0) = −S(0) = 0, C ′′(0) = −1 < 0 and C ′′(x) = −C(x). The first three
relations tell us that C attains a local maximum at 0 and this maximum is strict.
The last relation tells us that C is concave on where C(x) is positive. Therefore,
we can find a small positive number x0 at which C ′(x0) < 0 and C(x0) > 0. By
concavity, we have

C(x)− C(x0)

x− x0
≤ C ′(x0) < 0,

as long as C(x) is non-negative. Assume that C is positive for all x > 0. Setting
l(x) = C ′(x0)(x−x0)+C(x0), this inequality can be expressed as C(x) ≤ l(x), x >
0, that is, the graph of C lies below the graph of the linear function l(x), which is
a straight line. However, l(x) vanishes at x1 = −C(x0)/C

′(x0)+x0, contradiction
holds.

Let p0 be the first zero of C in (0, x1]. Since C ′′ < 0 on [0, p0), C
′(x) < C ′(0) =

0, C(x) strictly decreases from 1 to 0 as x runs from 0 to p0. We claim that C
satisfies the relation C(2p0 − x) = −C(x). For, letting ϕ(x) = −C(2p0 − x),
we verify that ϕ(p0) = 0 = C(p0), ϕ

′(p0) = C ′(p0) and ϕ satisfies the equation
in (3.8). By Lemma 3.16 the claim holds. Using this relation and Proposition
3.17(a),

C(x+ 4p0) = −C(2p0 − (x+ 4p0))

= −C(−x− 2p0)

= −C(x+ 2p0)

= −C
(
2p0 − (−x)

)
= C(−x)

= C(x),

whence 4p0 is a period of C. We take P = 4p0.

A remark concerning the proof above, in general, for a given function f on
R, the function f̃(x) = f(2x0 − x) is the reflection of f with respect to the ver-
tical line x = x0, and f̂(x) = −f(x) is the reflection of f with respect to the
x-axis. Thus the function ϕ is composed of two reflections, first reflecting C with
respect to the vertical line x = p0 and then reflecting it with respect to the x-axis.

In fact, the period P given in the above proof is the minimal period of C.

Proposition 3.19. The period P = 4p0 described in the proof of Theorem 3.20
is the minimal period of C. It follows that C is strictly decreasing on [0, P/2] and
strictly increasing on [P/2, P ].

Proof. From what have been proved in the previous theorem especially our claim,
we know that C decreases strictly from 1 to −1 and 1 as x runs from 0 to 2p0,
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and 1 and −1 are respectively the maximum and minimum of C over [0, 2p0].
Using the relation C(4p0 − x) = C(−x) = C(x), C increases strictly from −1 to
1 as x runs from 2p0 to 4p0, so 1 and −1 are in fact the maximum and minimum
of C over R. In particular, C(x) ∈ (−1, 1) for x ∈ (0, P ). This shows that
P = 4p0 is the minimal period of C. For if there is some T ∈ (0, P ) such that
C(x+ T ) = C(x), then C(T ) = C(0) = 1, which is impossible.

To show that P is in fact equal to 2π = 2× 3.14159 · · · , we recall that 2π has
been used to denote the circumference of the unit circle. Using line integrals from
advanced calculus, for any plane curve γ, we can find a (regular) parametrization
of it, that is, a map c : [a, b] →→ R2 such that c(t) = (x(t), y(t)), c′(t) 6=
(0, 0), c([a, b]) = γ, and c(t) is one-to-one for t ∈ [a, b). We define the length of
c to be the line integral ∫ b

a

√
x′2(t) + y′2(t)dt.

It can be proved that this line integral is independent of the parametrization c.
As a result, we define it to be the length of the plane curve γ. The length of
a curve is called the circumference or perimeter of the curve when the curve is
closed.

We now define 2π to be the perimeter of the unit circle. Analytically it
can be evaluated by fixing a regular parametrization of the unit circle. We do
it as follows. Consider the special parametrization γ : [0, P ] → R2 given by
γ(t) = (C(t), S(t)). Clearly, γ′ 6= (0, 0) so it is regular. Furthermore, it travels
along the unit circle exactly once in counterclockwise direction as t increases from
0 to P . To see this let us assume for some t1, t2 ∈ [0, P ), t1 < t2, γ(t1) = γ(t2),
that’s, (C(t1), S(t1)) = (C(t2), S(t2)) holds. By applying Lemma 3.16 to the
function C(x + t1) − C(x + t2) one deduces that C(x + t1) = C(x + t2) for all
x. Replacing x by x − t1 yields C(x) = C(x + t2 − t1), which means t2 − t1 is
also a period of γ. But, t2 − t1 < P , contradicting the minimality of P . So, γ
must be one-to-one on [0, P ). Moreover, to show that γ is onto the circle, let
(x, y) satisfy x2 + y2 = 1. As |x| ≤ 1 and C maps [0, 2p0] onto [−1, 1], we can
find some t ∈ [0, 2p0] such that C(t) = x. From the relation C2 + S2 = 1 we
see that S(t) = ±y. In case S(t) = y, we are done. In case S(t) = −y, we take
t1 = −t+ 4p0 ∈ [2p0, P ) to get C(t1) = x and S(t1) = −S(t) = y. It follows that

2π ≡
∫ P

0

√
C ′2(t) + S ′2(t) dt = P.

In high school the sine and cosine functions were defined via the angle-side re-
lation in a perpendicular triangle. In some first year class power series expansions
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were used to define them. From now on we will abandon these approaches and
use the discussion in this section to define the cosine and sine functions. After all,
an angle, a side, and a triangle, etc, are geometric other than analytical notions.
Abandoned together is the unit “degree”. We should use “radian”, for instance,
45◦ should be understood as π/4.

From now on we will take C(x) and S(x) to be our rigorous definition of the
cosine and sine functions, and the notations will also be switched back to cos x
and sin x. Other trigonometric functions such as tangent and cotangent can be
defined as before in terms of the sine and cosine functions.

One word about the inverse trigonometric functions. Take the cosine function
as an example. The cosine function is not monotone, but we know over which
intervals it is. In order to have an inverse we need to restrict the function on
some interval of length less than or equal to π. In particular, the restriction
of the cosine function on [0, π] is strictly increasing so it has a continuous in-
verse which is also differentiable on (0, π). We denote this particular inverse by
Arccos x. Similarly, the inverse of the sine function over [−π/2, π/2] is denoted
by Arcsin x. In general, an interval is needed to specify when we talk about the
inverse trigonometric functions.

In summary, in this section transcendental functions including the exponen-
tial, cosine and sine functions have been defined as the solutions to some sim-
ple differential equations satisfying simple initial conditions. Specifically these
solutions are found in the form of infinite series of functions which converge uni-
formly on every bounded interval of the real line. Using the uniqueness property
in differential equations, this approach yields effortlessly basic properties of these
functions. Another nice feature of this approach, which is its feasibility to gener-
alization, may be briefly seen in some exercises. In fact, many so-called “special
functions”, such as the Bessel functions, Hermite polynomials, Legendre func-
tions,...etc, which are so vital in physics and engineering, are defined as solutions
to some second order linear differential equations.


